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We modelled the isothermal crystallisation of oxide glasses during their phase separation
using the static Monte Carlo technique as in the site percolation model. Initial compositions
such that crystallisation can only occur in the evolving glassy matrix phase were
considered. The isothermal crystallisation behaviour in terms of model analogues of crystal
nucleation and growth were found to qualitatively correspond to the experimental results.
The percolation behaviour of the crystalline phase in the evolving glass-ceramic was then
studied. The validity of the scaling assumption for percolation phase transition was first
tested for the considered systems and then various critical exponents at and near the
percolation threshold was estimated. It was found that scaling hypothesis followed for all
cases considered in the present investigation. C© 2002 Kluwer Academic Publishers

1. Introduction
The process of phase separation of oxide glasses and
their crystallisation can either occur at two different
temperatures or they may be occurring concurrently
at the same temperature depending on the choice of
experimental conditions. In the former case, the mi-
crostructures of oxide glasses resulting from glass-in-
glass phase separation primarily control the microstruc-
tural evolution of glass-ceramics [1, 2]. However, for
the latter case the compositional changes in the glass
occur along with crystallisation [1]. It is imperative to
understand how and to what extent different changes
taking place in the system affect microstructural mod-
ifications during the crystallisation of glasses. Further,
an important aspect of this problem is the effect on
connectivity of the clusters of the crystalline phase near
its percolation threshold in the resulting glass-ceramics
[3, 4]. Keeping these in view, we use the classical site
percolation model [5] for the simulation of isothermal
crystallisation (IC) of oxide glasses. In the present pa-
per, we only deal with simultaneous phase separation
and crystallisation. We will present the results for crys-
tallisation of prior phase-separated glasses elsewhere.
Further, we only consider phase separation by nucle-
ation. For this, we first qualitatively model and present
the results (in Section 2) of the isothermal crystallisa-
tion in glasses undergoing phase separation using the
classical site percolation model. Next, we study differ-
ent aspects of cluster statistics of the crystalline phase
at or near its percolation threshold in Section 3.

2. Simultaneous phase separation
and crystallisation of oxide glasses

We start with a model system (called system 1 and con-
structed using the static Monte Carlo technique) with
isothermal crystallisation kinetics, which qualitatively
resembles a homogeneous oxide glass. The salient fea-
tures of this system pertain to homogeneous nucleation
and polymorphic crystallisation. The system is com-
prised of sites. The sites are assigned values between
0 and 1. The distribution of these values in the interval
0 to 1 is Gaussian. The spatial distribution of numbers
assigned to sites around each site, in the present study,
is also near to a Gaussian. This is usually achieved by
adopting an averaging procedure with its inclusion of
nearest, second and third nearest neighbours of a chosen
site. A site value when compared with the crystallisa-
tion probability of the system (p) gives the site crys-
tallisation probability. That is, if the site value is less
than or equal to p then the site is identified as crystalline
one. The initial value of p is 0 and then is incremented
in steps of 0.001. Since crystallisation occurs in units
of a site, therefore we assume the crystallisation of an
isolated site surrounded by glassy matrix a nucleation
event. Two sites are defined as neighbours if they are
nearest or second nearest or third nearest neighbours.
As p is incremented the growth of these nuclei oc-
curs by crystallisation of their neighbouring sites. Such
crystalline clusters are known as grains. At some value
of p, these grains may impinge at a grain boundary.
Thus, number of grains present also gives the number
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of crystal nuclei in the system. We assume from experi-
mental observations that increase in heat treatment time
is the analogue of increase in p. However, the values
assigned to sites according to system 1 spatial distribu-
tion remain the same throughout this process. Thus, in
this model the crystal nucleation and growth behaviour
of the systems depend only on the overall and spatial
distribution of values assigned to sites in the system.
The latter, will of course, be a function of temperature,
which cannot be handled, in the present model. This
therefore implies a single stage crystallisation process
unlike those followed in controlled crystallisation of
glasses. We shall refer to the foregoing, the progress
of crystallisation with increase in p, as the isothermal
crystallisation algorithm (ICA). To understand how this
model may be used here, in the next section, we present
a physical picture of the process of simultaneous phase
separation and crystallisation based on experimental
observations in the following sub-section.

2.1. The physical picture
Phase separation of oxide glasses gives rise to two
glassy phases. One is network forming oxide rich
(NFR) and the other network forming oxide lean (NFL)
composition. The latter, owing to its composition, has
a greater tendency to crystallize than the initial glass.
Crystal nucleation occurs within this glassy phase
and is determined by its composition [1]. A typical
temperature-composition diagram of a binary glass-
system that undergoes phase separation is shown in
Fig. 1. We consider a system in which composition
ca is NFR and composition cb is NFL and that, at the
given temperature, crystallisation can only occur in the
phase with composition cb. We only study phase sepa-
ration and crystallisation of glasses of composition in
region III. Here phase separation takes place by forma-
tion of droplets of composition ca through nucleation
in the resulting cb matrix. The most recent studies in
this composition regime are on BaO-SiO2 [1, 6, 7] and

Figure 1 Schematic of a typical temperature-composition diagram of
glass systems: the arrow pointing towards composition cb is assumed to
be that of system 1.

Li2O-SiO2 systems [1, 8]. As phase separation pro-
gresses with time, more and more droplets of ca phase
are formed and the composition of the matrix tends
towards cb. This also means that matrix composition
displays variation. As the matrix becomes more cb rich,
the crystal nucleation rate increases. Initially, a curved
plot of number of crystals per unit volume against time
is observed for such cases [1]. The crystal nucleation
rate approaches a constant value at longer times as the
matrix phase reaches its equilibrium composition cb.
The constant nucleation rates approached at later stage
are found to be same because the eventual composi-
tion (cb) of the matrix phase is identical for all these
glasses [1]. As the initial glass composition is shifted
away from cb, the time required to achieve constant
nucleation rate (induction time) is found to decrease.

2.2. The model
Experimental observations are available only on the ef-
fect of phase separation on crystal nucleation and not on
the crystal growth or the overall crystallisation kinetics
[1, 6, 7]. We try to utilise this information to simu-
late the overall (isothermal) crystallisation process of
a glass undergoing phase separation (with initial com-
position in region III in Fig. 1). As mentioned above
crystallisation can occur only in the evolving matrix
phase since cb is the NFL composition. In literature it is
mentioned that the changing composition of the matrix
phase in such a system affects the crystallisation. How-
ever, the nature of this change has not been clarified. In
our model we make the assumption that as phase sep-
aration progresses with time, more and more droplets
of ca phase are formed and the fraction of matrix with
composition cb accordingly increases. Thus, droplets
always form with composition ca whereas those regions
of matrix, which are prone to crystallisation, attain com-
position cb. Thus, while crystallisation occurs with in-
crease in the value of p, we need to take into account
the effect of changing composition through variation
in spatial site value distributions. However, this would
make the algorithm complex and computationally in-
tensive. In addition, the initial configuration of the sys-
tem will change with p thus making the study of perco-
lation characteristics of the system difficult. Therefore,
instead of trying to follow the temporal evolution, we
prepare the model system such that the different states
that will be encountered during phase separation are
present in it. For achieving this, we proceed as follows.

We consider a three-dimensional (3D) cubic array of
L × L × L sites (where L = 150 for IC studies). Two ini-
tial glass compositions, such that they eventually result
in 0.1 and 0.2 fraction of droplet phase in the glass, are
chosen. The systems corresponding to these are labelled
2a and 2b respectively. The algorithm of the model is
implemented in the following manner (see flow chart
in Fig. 2).

We begin by considering an array A having site val-
ues according to system 1 distribution. This distribution
is assumed to represent the crystallisation behaviour of
the homogeneous glass of composition cb. To create a
droplet in the model system we randomly chose a site
in array A. If the average of the value of the site and its
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Figure 2 Flowchart for implementation of the algorithm for modelling
simultaneous phase separation and crystallisation.

neighbours (called the AV henceforth) is higher than a
certain threshold value (called the ps value) then it is
counted as part of a new droplet and AV is assigned to
this site in a new array (called B). The nearest, second
nearest and the third nearest neighbours are defined as
neighbours of a site. Rest of the sites comprising the
droplet are found and assigned values (in array B) by
following the same procedure for the sites neighbour-
ing the initially identified droplet site. To model another
droplet we follow the parallel procedure. This is contin-
ued to achieve the desired fraction of the droplets viz.
01 and 0.2 respectively for system 2a and 2b. The val-
ues of ps corresponding to these cases are determined
apriori by conducting the simulation to attain respective
fractions of droplets in array B from array A. Having
created the desired fraction of droplets, we compare
the AV of a given site, not belonging to droplets and its
neighbours, with ps. If AV is less than ps, then this value
is assigned to corresponding site in array B. This is con-
tinued through the random selection of sites in array A
and the process is terminated when the fraction of such
sites equals to those of droplets in array B. It is obvious
that many of the sites are still without consideration in
old array A. They are correspondingly transformed to
array B with the old system 1 distribution. Therefore,
the matrix sites in array B have values according to two
Gaussian distributions. One belonging to system 1 and
other corresponds to the above mentioned distribution

(henceforth called second distribution). The probabil-
ity of crystallisation of a fraction of second distribution
sites is less than those sites having system 1 values.
Owing to this, the system may demonstrate an initially
slow crystal nucleation rate that will increase gradually
to the steady state rate of system 1. Thus, the fraction of
sites in the system assigned values according to second
distribution represents the changing composition of the
matrix and is hence taken as 0.1 and 0.2 respectively
of the total sites in the systems 2a and 2b respec-
tively. The next question is how the sites belonging to
second distribution should be spatially distributed in the
matrix.

During phase separation, the composition change in
different regions of the matrix may not be uniform [10].
When a droplet is formed composition in its immediate
neighbourhood changes first and consequently crystal
nucleation may be more probably in the neighbourhood
of droplets. To model these compositional changes in
the matrix in terms of site crystallisation probabilities,
sites that are nearest neighbours to a droplet are not
subjected to the second distribution. They have the val-
ues initially assigned to them according to the system 1
distribution. This is to ensure that crystallisation in the
immediate neighbourhood of droplets is more probable.
Rest of the sites conforming to either of the two distri-
butions may be distributed randomly in the matrix.

These systems are now subjected to the isothermal
crystallisation algorithm (ICA) as mentioned earlier.
The ICA is terminated as soon as the fraction of crys-
talline sites in systems 2a and 2b equals the NFL phase
fraction (or as soon as p > ps). In the next two sub-
sections, results in terms of numbers of crystal nuclei
and average grain size are presented and discussed.

2.3. Results and discussion
The nucleation behaviour for system 2a and 2b are ob-
served in terms of number of crystal nuclei per site (n1).
This is found by dividing the number of grains present
at a p with the total number of sites in the system.
By studying the variation of average grain size (ags—
calculated by dividing the number of crystalline sites
by the number of grains in the system) in the system
with increase in p, we monitor growth rates. For the
sake of comparison, we also present crystal nucleation
and growth curves of homogeneous glass (system 1) in
terms of n1 and ags. All plots given here are line plots.
This is owing to the high density of data points. For
all n1 and ags plots, the average values of the standard
deviation of the data points in each plot over the range
of p values where the respective quantities increase at
a constant rate is always below 0.5%.

Fig. 3a shows n1 versus p for systems 1, 2a, and 2b
respectively. The general characteristics of curves 2a
and 2b are similar to that of 1. In the initial stages, n1
shows a non-linear increase. This models the effect of
changing composition during phase separation on crys-
tallisation. During this period, only small regions (near
the droplets) have the composition cb. Since the frac-
tion of sites in the matrix where crystallisation is prob-
able is small, hence crystal nucleation rates are slower.
After the initial non-linear increase, the three curves
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(a)

(b)

Figure 3 (a) Variation of n1 for systems 1, 2a and 2b with p. (b) Depicts
the nature of variation of ags in systems 1, 2a and 2b with p.

increase at almost same constant rates. This models
the effect of the achievement of the composition cb (in
all three systems), on completion of phase separation,
over the rest of the matrix sites where crystallisation
has not yet occurred. Further, the induction period of
this, increase with decrease in fraction of the matrix
(NFL) phase in the system. This is because the period
required for achieving the completion of phase sepa-
ration (and constant composition of the matrix phase)
increases. n1 decreases with increasing p at later stages
and finally reaches a constant value. The total number
of nuclei eventually formed increases with increasing
fraction of the matrix phase. Hence, all the features of
experimental observations of crystal nucleation during
phase separation [1, 6, 7] have been incorporated qual-
itatively in our model. It is important to mention here
that the attainment of the above in the present model
is owing to the consideration of two types of Gaussian
distribution (mentioned in the preceding subsection) in-
voked for understanding the crystallisation behaviour
of the matrix phase in systems 2a and 2b. Increase in
fraction of sites that have lesser probability of crys-
tallisation than sites belonging to system 1 distribution
models the composition change.

ags versus p plots for these systems are given in
Fig. 3b. The induction period for growth of system 1
is not very different from its induction period for nu-
cleation but this is not so for systems 2a and 2b. For
these two systems, the induction periods for nucleation
and growth differ by more than 0.1 (in units of p). Sites
having values belonging to second distribution may be

neighbours of those belonging to system 1 distribution.
The crystal growth rate thus increases slowly (com-
pared to the initial rate of increase of number of crystal
nuclei) in the initial stages of crystallisation. This re-
sembles the situation where region has attained the cb
(cf. Fig. 1) but its neighbourhood has not. Owing to
this, different induction periods for crystal nucelation
and growth (Fig. 3a and b) are observed. Hence, this
is also an effect of gradual achievement of a uniform
matrix composition on crystallisation. After, the initial
non-linear portions, ags increase with constant rates.
This signifies that composition cb has been attained in
the rest of the matrix. In later stages of the transfor-
mation, this rate decreases with increase in p and this
decrease is more significant for systems 2a and 2b.

The difference in the total number of crystal nuclei
formed (on completion of crystallisation process) in
system 1, 2a and 2b is again due to impeded growth.
Sites not available for crystal nucleation due to growth
(ingestion) in system 1 are also possible nucleation sites
in systems 2a and more so in 2b. This increases the
total number of crystal nuclei formed in the system.
However, there are no experimental observations of this
nature. Rarely crystallisation treatments are carried out
to completion [10].

3. Percolation characteristics
The properties of the resulting glass-ceramics are sen-
sitive to the nature of connectivity of the ceramic phase
in the glassy matrix [4]. Hence understanding various
parameters pertaining to connectivity assumes special
significance for such systems. In this section, we try to
understand how phase separation during crystallisation
affects the connectivity of the crystalline phase from
percolation characteristics of the systems 2a and 2b.

The behaviour of the systems at or near percolation
threshold, according to the scaling theory of percolation
phase transition, is given by different characteristics of
cluster size and its distribution [5, 11]. The various
terms describing these characteristics are expressed in
terms of increase in fraction of crystalline phase (x) in
the system. This (x) is interpreted as the probability of
any site in the system being crystalline. The fraction of
crystalline phase at which percolation is first observed
is the percolation threshold (xc). A critical exponent
describes each of these characteristics at or near xc.
The critical exponents we find here are τ , β and γ .
The fundamentals and other details relating to these
are summarised in the book by Stauffer and Aharony
[5]. We reproduce some of the relevant expressions for
the sake of continuity. The scaling hypothesis stipulates
the form of the scaling function as

ns(x)/ns(xc) = νs(x) = exp(−z) = f (z) (1)

where z ∝ (x − xc)sσ , ns is the number of clusters with
cluster size s (= number of sites in a cluster) and σ is a
critical exponent. To test whether this scaling assump-
tion is valid for a system we plot ns(x)/ns(xc) versus
z for different s values. The value z for different clus-
ter sizes s is calculated using the best numerical esti-
mate for the universal value of σ = 0.45 for 3D systems
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based on report in literature [5]. The form of this func-
tion should not change for different cluster sizes. Since
scaling theory is not applicable to clusters of small size
[5], therefore we only consider two intermediate clus-
ter size ranges. The first size range includes all clusters
with sizes ranging from 64 to 127 and the second in-
cludes clusters that can have any size from 128 to 255.
s is the geometric mean of the two border sizes.

At the percolation threshold x = xc, we have scaling
relation

ns(xc) ∝ s−τ (2)

where exponent τ defines the number ns(xc) of s cluster
only at x = xc. Thus, τ is given by the slope of ns versus
s plots. This excludes the infinite cluster.

Another important exponentβ describes the variation
of the probability of any arbitrary site in the system
being a part of the percolation cluster (P) as x increases
beyond xc.

P ∝ (x − xc)β (3)

where β = (τ − 2)/σ The slope of log P versus log
(x − xc) plot gives β. To implement this we find the
number of sites in the infinite cluster above xc.

The variation of the mean cluster size S = 
nss2/


snss with x is understood in terms of exponent γ by

S ∝ |x − xc|−γ (4)

where γ = (3 − τ )/σ . The slope of log S (where
S = 
ss2ns/
snss) versus log |x − xc| plots give the γ

value. We calculate its values both above and below xc.
The value of the percolation threshold of a system

is unique only for an infinite system. Therefore it is
necessary that we first determine an effective percola-
tion threshold xc(L) for a finite size system. This is the
most probable value of x for the system at the perco-
lation threshold found from a large number of Monte
Carlo (MC) simulations [12]. We used 500 such MC
simulations of 3D cubic arrays of size corresponding
to L = 180 to find xc(L) for each system. To find expo-
nents τ , β and γ we use average values of cluster statis-
tics parameters of 200 MC simulations on 3D systems
of size corresponding to L = 200. Thus we use different
system sizes for determination of xc(L) and the critical
exponents. Smaller system size and more number of
MC simulations enables us to accurately estimate the
value of xc(L) more efficiently. However, for estima-
tion of values of critical exponents τ, β and γ we need

T ABL E I System characteristics and critical exponents at and away from xc

System xc(L) P at xc(L) τ β γ (above xc) γ (below xc)

Universal valuea –b –b 2.18 0.41 1.80 1.80
1c 0.0969 0.0330 2.25 0.36 1.99 2.12
2a 0.0965 0.0337 2.27 0.36 1.99 2.25
2b 0.1049 0.0403 2.31 0.36 2.06 –

aAfter reference [5].
bThese are system dependent characteristics.
cAfter reference [14].

larger system sizes. Critical exponents found from one
set of 200 MC simulations vary from the value found
from another set by not more than ±0.005. For a fi-
nite system, the boundaries of the lattice cut the infinite
cluster into several pieces, increasing the number of
finite clusters. To reduce this effect the size of a clus-
ter is determined using periodic boundary conditions
[5, 13]. Finally, from the estimates of critical exponents
of different systems we determine whether their crit-
ical behaviour conforms to the universality concept.
According to this concept, different systems of same
dimensionality have the same value for each critical
exponent [5] for infinite or very large systems (which
approach the ‘thermodynamic limit’). In contrast to
this, these exponents for finite systems display devi-
ation from their universal values (finite size effects). In
the next section, results in terms of the critical expo-
nents found by using the procedures described above
are presented and discussed.

3.1. Results and discussion
The values of systems characteristics and critical expo-
nents of systems 2a and 2b are given in Table I. For the
sake of comparison, we have also included percolation
characteristics of system 1. The xc(L) and approximate
P values for each system of the size corresponding to
L = 180 is given in the second and third column of
Table I respectively. Values of critical exponents τ , β

and γ are given in the fourth, fifth, sixth and seventh
columns of Table I. The best numerical estimates [5] of
the universal value of these critical exponents are also
given in the second row of this table.

Figs 4a and b show the ns(x)/ns(xc) versus z plots
for systems 2a and 2b respectively. Generally, the data
points for the two cluster sizes follow the same curve
for both systems. Thus, the scaling theory is found to
be valid for these two systems. The log ns versus log s
plots for systems 2a and 2b are shown in Fig. 5. Owing
to larger finite size effects, system 2b has a higher slope
than system 2a and its data points show slight deviation
from linearity at higher values of s. The deviation from
the universal value is around 4% and 6% for system 2a
and 2b respectively. The higher τ values obtained for
systems 2a and 2b tells us that there is relatively lesser
number of larger clusters in the system at xc compared
to system 1. Owing to impeded growth, the required
proportion of larger clusters is not formed at percola-
tion. This effect is increased, as expected, when phase
separation is increased, by making the initial composi-
tion more NFR (system 2b). The xc and P value also
show increase with increase in phase separation.
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(a)

(b)

Figure 4 (a) Plots of νs (=ns(x)/ns(xc)) versus z for system 2a. νs7 for
clusters with s = 64 to 127 and νs8 for s = 128 to 255. (b) Plots of νs

(=ns(x)/ns(xc)) versus z for system 2b. νs7 for clusters with s = 64 to
127 and νs8 for s = 128 to 255.

Figure 5 log ns versus log s plots at x = xc for systems 2a and 2b.

The β values are given by the slopes of the log P ver-
sus log |x − xc| plots of the considered systems (Fig. 6).
The slopes for both systems 2a and 2b are same as that
of system 1. The deviation from the universal value
is about 10%. Fig. 7 shows log S versus log |x − xc|
plots when xc is approached from above and when it is
approached from below for systems 2a and 2b.

The γ value when x > xc is similar for systems 1 and
2a but is slightly higher for system 2b. The deviation
from the universal value is lower when x > xc than when
x < xc. For x < xc the deviation from the universal value

Figure 6 log P versus log |x − xc| for systems 2a and 2b.

Figure 7 log S versus log |x − xc| for systems 2a and 2b.

is very large for system 2a. In case of system 2b, the data
points show a distinctly non-linear behaviour. Hence,
no linear fit has been attempted for this system and
no value has been reported in Table I. However, since
the scaling function has been found to be valid for all
these cases therefore we may conclude that the above
mentioned deviations are owing to more predominant
finite size effects when x < xc. It may be due to the
formation of large clusters that are more than expected
as percolation is approached.

4. Conclusions
Isothermal crystallisation of glasses undergoing phase
separation has been modelled using the static Monte
Carlo technique as in the site percolation. Only the
evolving matrix phase is assumed to have composition
suitable for crystallisation at the given temperature. The
experimental observations of effect of changing com-
position of the matrix phase on crystal nucleation and
growth have been modelled in a qualitatively way. Our
results suggest that due to inhomogeneous composition
of the matrix during phase separation, crystal growth is
impeded and consequently crystal nucleation densities
may be enhanced. This may lead to finer ceramic phase
microstructure in these systems than that resulting from
a homogeneous glass in the initial stages of crystalli-
sation. Further, constrained growth may affect crystal
nucleation and growth leading to different induction
periods for these systems.
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The estimated values of the two critical exponents
(β and τ ) lie within acceptable deviation from their
universal values but this is not the case for γ . The fi-
nite size effects are different for different systems and
depend on their site value distributions (simulation ana-
logue of initial compositions of systems). However, the
scaling hypothesis for percolation phase transition has
been found to be valid for all systems. Hence, we con-
clude that the universality concept has been found to be
valid for all systems considered.
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